End-Term Study Guide for MH4714

N.B.

This list also applies to the Autumn I grade exam but does not apply to the Autumn repeat examination.
(You will be asked to answer three out of four questions.
Each question will be worth 20 marks.)

1. Definition of $\lim _{n \rightarrow \infty} a_{n}=L$.
2. Prove that a convergent sequence is bounded.
3. Give an example of a bounded sequence which is not convergent.
4. Give an example,(and verify it,) of a strictly increasing or strictly decreasing sequence of rationals which converges to a rational.
Give an example,(and verify it,) of a sequence of rationals which converges to an irrational. (See Questions 7 and 8 on Exercise Sheet IV, Question 1 on Exercise Sheet VI.)
5. State the Completeness Axiom for the real numbers.
6. Prove that there is a real number L such that $L^{2}=2$ (or $L^{2}=3$ or $L^{3}=5$ etc.)
7. Definition of $\lim _{x \rightarrow a} f(x)=L$.
8. When is a function said to be continuous at $a \in \mathbb{R}$?
9. Let $k \in \mathbb{R}$. Given that the functions $f(x)=x, g(x)=k$ are continuous over \mathbb{R} and using the properties of limits, prove that every polynomial is also continuous over \mathbb{R}.
10. State the Intermediate Value Theorem.
11. Use the Intermediate Value Theorem to prove that a given equation has a real solution. (See Question 5 on Exercise Sheet VIII, Question 3 on Exercise Sheet X and Question 2 on Exercise Sheet XI.)
12. Give an example of a function which is bounded over an interval $[a, b]$ but which does not have a maximum value in $[a, b]$.
13. Give an example of a continuous function which is not bounded over an interval.
14. Give an example of a continuous function which is bounded over an interval but does not have a maximum value in the interval.
15. When is a function said to be differentiable at $a \in \mathbb{R}$?
16. Prove that, if f is differentiable at $a \in \mathbb{R}$, then f is continuous at a.
17. Give an example (and verify it) of a function which is continuous at a point $a \in \mathbb{R}$ but is not differentiable at a.
18. Give an example (and verify it) of a function which is differentiable once but not twice at a given point or give an example of a function which is differentiable twice but not three times at a point etc. (See Question 1 on Exercise Sheet X.)
19. Let f be continuous and differentiable over (a, b). Prove that, if f has a maximum or minimum value at $c \in(a, b)$, then $f^{\prime}(c)=0$.
20. Determine the maximum and minimum value of a function over an interval $[a, b]$ and justify your answer.(See Question 3 on Exercise Sheet VI, Question 5 on Exercise Sheet VIII, Question 1 on Exercise Sheet IX.)
21. State and prove Rolle's Theorem.
22. Give an example (and verify it) of a function $f(x)$ which is continuous over an interval $[a, b]$ with $f(a)=f(b)$ but where $f^{\prime}(x)$ is not 0 anywhere in (a, b).
23. Use Rolle's theorem to prove the Mean Value Theorem.
24. Use the Intermediate Value Theorem and Rolle's theorem to prove that a given polynomial has exactly one real root. (See Question 1, Exercise Sheet XI.)
25. Use the Mean Value Theorem to prove that, if $f^{\prime}(x)=0$ for all x in an interval then $f(x)$ is a constant over the interval.
26. Show that the graph of f^{-1} is the reflection of the graph of f in the line $y=x$. (See Questions 2 and 3 on Exercise Sheet X.)
27. When is a function said to be integrable?
28. Give an example (and verify it) of a function which is not integrable.
29. Let $f(x)=x^{2}$ and let P_{n} be the partition of the interval $[a, b]$ into n equal subintervals.
Verify that

$$
\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\frac{1}{3} b^{3}-\frac{1}{3} a^{3}
$$

(See Question 3 on Sheet XI.)
30. Prove the Fundamental Theorem of Calculus, that is, if f be integrable over $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f(x) d x=g(b)-g(a)
$$

31. Evaluate some area measures and definite integrals. (See Questions 2,4,5,6 on Exercise Sheet X and Question 2,4,5 on Exercise Sheet XI.)
32. Prove Taylor's Theorem.
33. Determine the Taylor expansion of a given function. (See Questions 6,7,8,9 on Exercise Sheet XI.)
